48 resultados para Disease resistance

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Clubroot, caused by Plasmodiophora brassicae, is the most devastating soil-borne disease of vegetable brassicas. It occurs all over the world and is responsible for crop losses of up to 10% every year. In Australia, the disease is being managed effectively with chemicals and cultural practices, but ideally control can be improved in the long term by the introduction of resistant cultivars. The life cycle ofP. brassicae and mode of action of plant resistance has not been fully elucidated because of the technical difficulties of working with an obligate, soil-borne plant pathogen. However, Arabidopsis thaliana, which is a host ofP. brassicae, has great potential as a model system for studying the life cycle, the infection process and development of resistance. We have developed a sand-liquid-culture system for growing Arabidopsis that allows easy observation of all life stages and, most importantly, the primary plasmodial stages within the root hair. The method was first optimised for observations of the lifecycle of the pathogen in a susceptible Arabidopsis ecotype (Col-3) where all stages of the lifecycle have now been observed and characterised. Further screening of Arabidopsis ecotypes for disease resistance has utilised one of the most virulent Australian pathotypes of brassica (ECD number 16/19/31). To date, Arabidopsis ecotype Ta-0 has shown a level of tolerance to the disease even though the roots get infected. It has been reported earlier that resistance toP. brassicae in Arabidopsis is due to one or a small number of genes. To examine changes in gene expression during the early, critical stages of infection, RNA was extracted from the susceptible and resistant ecotypes at two time points, 4 days and 17 days after inoculation. Microarray analysis will be used to investigate genome wide changes in gene expression during infection but also to identify candidate genes that may confer resistance to Australian isolates of the pathogen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Owing to their sessile nature, plants have evolved mechanisms to minimise the damaging effects of abiotic and biotic stresses. Attack by pathogenic fungi, viruses and bacterium is a major type of biotic stress. To resist infection, plants recognise invading pathogens and induce disease resistance through multiple signal transduction pathways. In addition, appropriate stimulation can cause plants to increase their resistance to future pathogen attack. We have found that exposure to non-lethal doses of UV-C (254 nm) renders a normally susceptible ecotype of Arabidopsis thaliana resistant to the biotrophic Oomycete pathogen Hyaloperonospora parasitica. The UV treatment induces an incompatible response in a dose-dependent fashion, and is still effective upon pathogen inoculation up to seven days after UV exposure. The degree of resistance diminishes with time but higher doses result in greater levels of resistance, even after seven days. Furthermore, the effect is systemic, occurring in parts of the plant that have not been irradiated. Incubation in the dark post?irradiation and prior to infection reduces the UV dose required to generate a specific level of pathogen resistance without affecting the duration of resistance. These observations, plus the inability of plants to photoreactivate UV photoproducts in the dark, strongly suggest that DNA damage induces the resistance phenotype. Currently, we are assessing the influence of DNA repair defects on UV-induced resistance, following the expression of a number of defence?related genes post-UV-C irradiation, and assessing the effect of UV in plant mutants deficient in specific signalling molecules involved in resistance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Briskly evolving phytopathogens are dire threats to our food supplies and threaten global food security. From the recent advances made toward high-throughput sequencing technologies, understanding of pathogenesis and effector biology, and plant innate immunity, translation of these means into new control tools is being introduced to develop durable disease resistance. Effectoromics as a powerful genetic tool for uncovering effector-target genes, both susceptibility genes and executor resistance genes in effector-assisted breeding, open up new avenues to improve resistance. TALENs (Transcription Activator-Like Effector Nucleases), engineered nucleases and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems are breakthrough and powerful techniques for genome editing, providing efficient mechanisms for targeted crop protection strategies in disease resistance programs. In this review, major advances in plant disease management to confer durable disease resistance and novel strategies for boosting plant innate immunity are highlighted.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The thesis examines the application of precision genome engineering technology to improve the disease resistance in chicken model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abscisic acid (ABA) has been implicated in determining the outcome of interactions between many plants and their pathogens. We had previously shown that increased concentrations of ABA within leaves of Arabidopsis induced susceptibility towards an avirulent strain of Pseudomonas syringae pathovar (pv.) tomato. We now show that ABA induces susceptibility via suppression of the accumulation of components crucial for a resistance response. Lignin and salicylic acid concentrations in leaves were increased during a resistant interaction but reduced when plants were treated with ABA. The reduction in lignin and salicylic acid production was independent of the development of the hypersensitive response (HR), indicating that, in this host-pathogen system, HR is not required for resistance. Genome-wide gene expression analysis using microarrays showed that treatment with ABA suppressed the expression of many defence-related genes, including those important for phenylpropanoid biosynthesis and those encoding resistance-related proteins. Together, these results show that resistance induction in Arabidopsis to an avirulent strain of P. syringae pv. tomato is regulated by ABA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmodiophora brassicae is a protistan pathogen that attacks roots of brassicaceous plant species causing devastating disease. Resistance is characterised by restriction of the pathogen and susceptibility by the development of severely malformed roots (‘clubroots’) and stunting of the plant that is associated with alterations in the synthesis of cytokinin and auxin hormones. We are examining the susceptible response in Arabidopsis and whether suppression of key resistance factors by the pathogen contributes to susceptibility. The interaction is being studied using a number of approaches including microscopy of the infection process and development of the pathogen within roots and host gene expression analysis. Quantitative PCR was used to confirm the timing of infection of roots and showed that infection occurred at day four and colonisation increased thereafter to high levels by 23 days after inoculation by which time roots were showing systemic abnormalities. To investigate the basis of this compatible interaction we have conducted a time course experiment following infection of a susceptible ecotype of Arabidopsis (Col-0) to examine whole genome geneexpression changes in the host. Differential gene expression analysis of inoculated versus control roots showed that a higher number of genes had altered expression levels at day four compared to that at day seven and at day ten. At day four the expression levels of several genes known to be important for recognition and signal transduction in resistant interactions and genes involved in the biosynthesis of lignin, phenylpropanoids and ethylene were suppressed. Suppression by P. brassicae of specific plant defence responses appears to be a key component of susceptibility in this system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eri silk produced by Philosamia cynthia ricini silkworm is a fibre not well-known to the silk industry, in spite of the fact that Eri silk is finer, softer, and has better mechanical and thermal properties than most animal fibres. Eri silk has a high commercial potential, as the host plants of Eri silk worms are widespread in diverse geographical locations, and the worms also have a higher degree of disease resistance than most other silk worms. Mills are often not aware of the properties of Eri for designing appropriate end products. Thus, Eri silk yarn is traditionally produced by hand spinning, and Eri silk usually ends up as material for handwoven shawls. The potential for bulk fibre processing and the development of soft luxurious novel Eri silk products is yet to be discovered. To better understand the material and its processing behaviour, Eri silk was characterised and cocoons were processed into tops through degumming, opening, and cutting filaments into different lengths, followed by a worsted spun silk processing route. Fibre properties such as fineness, crimp, strength and length at different processing stages up to combed tops were measured. The results indicate that staple Eri silk can be processed via the worsted topmaking route, using a cut length of 200 mm or 150 mm for filament sheets prepared from degummed cocoons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plant hormone, abscisic acid (ABA), has previously been shown to have an impact on the resistance or susceptibility of plants to pathogens. In this thesis, it was shown that ABA had a regulatory effect on an extensive array of plant defence responses in three different plant and pathogen interaction combinations as well as following the application of an abiotic elicitor. In unique studies using ABA deficient mutants of Arabidopsis, exogenous ABA addition or ABA biosynthesis inhibitor application and simulated drought stress, ABA was shown to have a profound effect on the outcome of interactions between plants and pathogens of differing lifestyles and from different kingdoms. The systems used included a model plant and an important agricultural species: Arabidopsis thaliana (Arabidopsis) and Peronospora parasitica (a biotrophic Oomycete pathogen), Arabidopsis and Pseudomonas syringae pathovar tomato (a biotrophic bacterial pathogen) and an unrelated plant species, soybean (Glycine max) and Phytophthora sojae (a hemibiotrophic Oomycete pathogen), Generally, a higher than basal endogenous ABA concentration within plant tissues at the time of avirulent pathogen inoculation, caused an interaction shift towards what phenotypically resembled susceptibility. Conversely, a lower than basal endogenous ABA concentration in plants inoculated with a virulent pathogen caused a shift towards resistance. An extensive suppressive effect of ABA on defence responses was revealed by a range of techniques that included histochemical, biochemical and molecular approaches. A universal effect of ABA on suppression or induction of the phenylpropanoid pathway via regulation of the key entry point gene, phenylalanine ammonia-lyase (PAL), when stimulated by biotic or abiotic elicitors was shown. ABA also influenced a wide variety of other defence-related components such as: the development of a hypersensitive response (HR), the accumulation of the reactive oxyden species, hydrogen peroxide and the cell wall strengthening compounds lignin and callose, accumulation of SA and the phytoalexin, glyceollin and the transcription of the SA-dependent pathogenesis- related gene (PR-1). The near genome-wide microarray gene expression analysis of an ABA induced susceptible interaction also revealed an yet unprecedented insight into the great diversity of defence responses that were influenced by ABA that included: disease resistance like proteins, antimicrobial proteins as well as phenylpropanoid and tryptophan pathway enzymes. Subtle differences were found in the number and type of defence responses that were regulated by ABA in each type of plant and pathogen interaction that was studied. This thesis has clearly identified in plant/pathogen interactions previously unknown and important roles for ABA in the regulation of many defence responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A shift to prefer more masculine male faces when conception risk is high may be an adaptation for finding mates with good disease resistance. We investigated whether preferences for other facial cues to long-term health also increase when conception is likely. We examined preferences for the faces of men with good health histories and for facial averageness and symmetry, two putative indicators of health during development. Preferences were tested at two points in the menstrual cycle that differed maximally in conception risk. No cyclic changes in preferences were found. We consider implications for the sexual selection of variation in preferences across the menstrual cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host–phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In some patients with major depressive disorder (MDD), individual illness characteristics appear consistent with those of a neuroprogressive illness. Features of neuroprogression include poorer symptomatic, treatment and functional outcomes in patients with earlier disease onset and increased number and length of depressive episodes. In such patients, longer and more frequent depressive episodes appear to increase vulnerability for further episodes, precipitating an accelerating and progressive illness course leading to functional decline. Evidence from clinical, biochemical and neuroimaging studies appear to support this model and are informing novel therapeutic approaches. This paper reviews current knowledge of the neuroprogressive processes that may occur in MDD, including structural brain consequences and potential molecular mechanisms including the role of neurotransmitter systems, inflammatory, oxidative and nitrosative stress pathways, neurotrophins and regulation of neurogenesis, cortisol and the hypothalamic–pituitary–adrenal axis modulation, mitochondrial dysfunction and epigenetic and dietary influences. Evidence-based novel treatments informed by this knowledge are discussed.